organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Chloromethyl-3-(3,5-dimethoxyphenyl)-1,2,4-oxadiazole

Pin-liang Wang, Hai-su Zeng, Hai-bo Wang* and Wen-yuan Wu

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 19 September 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.173; data-to-parameter ratio = 14.6.

In the title compound, $C_{11}H_{11}ClN_2O_3$, the substituted phenyl ring and the oxadiazole system are essentially coplanar. Close intramolecular $C-H\cdots N$ interactions are observed.

Related literature

For related literature, see: Nicolaides *et al.* (1998); Romero (2001); Terashita *et al.* (2002).

Experimental

Crystal data

$C_{11}H_{11}CIN_2O_3$	c = 9.537 (2) Å
$M_r = 254.67$	$\alpha = 80.72 \ (3)^{\circ}$
Triclinic, P1	$\beta = 73.90 \ (3)^{\circ}$
a = 7.861 (2) Å	$\gamma = 70.09 \ (3)^{\circ}$
b = 8.502 (2) Å	V = 574.2 (2) Å

Z = 2
Mo Ka radiation
$\mu = 0.33 \text{ mm}^{-1}$

Data collection

Enraf–Nonius CAD-4	
diffractometer	
Absorption correction: ψ scan	
(North et al., 1968)	
$T_{\min} = 0.879, \ T_{\max} = 0.937$	
2422 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.173$ S = 1.082249 reflections T = 293 (2) K 0.40 × 0.20 × 0.20 mm

2249 independent reflections
1589 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
3 standard reflections
every 200 reflections
intensity decay: none

154 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9-H9A\cdots N2$ $C5-H5A\cdots N1$	0.93	2.60	2.925 (5)	101
	0.93	2.54	2.838 (5)	99

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2037).

References

- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Romero, J. R. (2001). Expert Opin. Investig. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 0 260 439.

supplementary materials

Acta Cryst. (2007). E63, o4234 [doi:10.1107/S1600536807048064]

5-Chloromethyl-3-(3,5-dimethoxyphenyl)-1,2,4-oxadiazole

P. Wang, H. Zeng, H. Wang and W. Wu

Comment

1,2,4-Oxadiazoles are an important class of five-membered heterocyclic compounds. Some derivatives of 1,2,4-oxadiazoles showed intrinsic analgesic (Terashita *et al.*, 2002), antiinflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties. We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, where the dashed lines indicate close C—H…N contacts which most probably are caused by the coplanar arrangement of the phenyl group and the oxadiazole system (Table 1). The other bond lengths and angles are of expected values (*cf.* Supplementary Material).

Experimental

A solution of chloroacetylchloride (16 mmol) in toluene (10 ml) was added dropwise to a solution of 3,5-(Dimethoxyl)benzamidoxime (14 mmol) in toluene (60 ml). The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford crude compound(I). Pure compound (I) was obtained by recrystallization from a mixture of ethyl acetate (15 ml) and light petrolum (b.p. 60–90°C, 7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃, δ , p.p.m.): 6.55–6.56 (m, 2H), 6.23–6.25 (m, 1H), 4.64 (s, 2H), 3.77 (s, 6H).

Refinement

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement using an riding motion approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the carrier atom.

Figures

Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate C—H…N interactions.

5-Chloromethyl-3-(3,5-dimethoxyphenyl)-1,2,4-oxadiazole

Crystal data	
$C_{11}H_{11}CIN_2O_3$	Z = 2
$M_r = 254.67$	$F_{000} = 264$
Triclinic, PT	$D_{\rm x} = 1.473 \ {\rm Mg \ m}^{-3}$

Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.861 (2) Å	Cell parameters from 25 reflections
b = 8.502 (2) Å	$\theta = 9-13^{\circ}$
c = 9.537 (2) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\alpha = 80.72 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 73.90 \ (3)^{\circ}$	Block, colourless
$\gamma = 70.09 \ (3)^{\circ}$	$0.40 \times 0.20 \times 0.20 \text{ mm}$
$V = 574.2 (2) \text{ Å}^3$	
Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.031$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293(2) K	$h = -9 \rightarrow 9$
$\omega/2\theta$ scans	$k = -10 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 11$
$T_{\min} = 0.879, T_{\max} = 0.937$	3 standard reflections

$T_{\min} = 0.879, \ T_{\max} = 0.937$
2422 measured reflections
2249 independent reflections
1589 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2249 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

every 200 reflections intensity decay: none

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl	0.3102 (2)	0.49956 (16)	0.15386 (12)	0.0816 (5)
01	0.3892 (4)	0.1611 (3)	0.3056 (3)	0.0548 (7)
02	-0.1673 (4)	-0.1007 (4)	0.9489 (3)	0.0684 (9)
O3	0.3152 (4)	-0.5222 (3)	0.6710 (3)	0.0578 (7)
N1	0.3733 (5)	0.0065 (4)	0.3778 (4)	0.0538 (8)
N2	0.1641 (4)	0.2229 (4)	0.5042 (3)	0.0451 (7)
C1	0.2542 (6)	0.4563 (5)	0.3446 (4)	0.0577 (10)
H1B	0.3402	0.4823	0.3861	0.069*
H1C	0.1297	0.5283	0.3852	0.069*
C2	0.2623 (5)	0.2789 (5)	0.3874 (4)	0.0448 (8)
C3	0.2402 (5)	0.0511 (4)	0.4938 (4)	0.0414 (8)
C4	0.1792 (5)	-0.0743 (5)	0.6045 (4)	0.0425 (8)
C5	0.2710 (5)	-0.2428 (4)	0.5881 (4)	0.0444 (8)
H5A	0.3678	-0.2777	0.5065	0.053*
C6	0.2172 (5)	-0.3588 (4)	0.6944 (4)	0.0446 (8)
C7	0.0694 (5)	-0.3066 (5)	0.8134 (4)	0.0492 (9)
H7A	0.0335	-0.3858	0.8841	0.059*
C8	-0.0273 (5)	-0.1346 (5)	0.8283 (4)	0.0478 (9)
C9	0.0298 (5)	-0.0180 (5)	0.7237 (4)	0.0469 (9)
H9A	-0.0304	0.0961	0.7325	0.056*
C10	-0.2766 (6)	0.0704 (5)	0.9669 (5)	0.0689 (12)
H10A	-0.3717	0.0780	1.0563	0.103*
H10B	-0.3335	0.1144	0.8859	0.103*
H10C	-0.1981	0.1342	0.9707	0.103*
C11	0.2735 (6)	-0.6468 (5)	0.7836 (4)	0.0576 (10)
H11A	0.3507	-0.7563	0.7535	0.086*
H11B	0.1447	-0.6389	0.8003	0.086*
H11C	0.2970	-0.6286	0.8722	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

Cl 0.1243 (11) 0.0765 (8) 0.0512 (6) -0.0560 (8) -0.0131 (6) 0.0155 (5) O1 0.0591 (16) 0.0518 (16) 0.0486 (15) -0.0255 (13) 0.0038 (12) -0.0016 (1 O2 0.083 (2) 0.0516 (17) 0.0531 (17) -0.0204 (15) 0.0089 (15) -0.0010 (1	
O1 0.0591 (16) 0.0518 (16) 0.0486 (15) -0.0255 (13) 0.0038 (12) -0.0016 (1 O2 0.083 (2) 0.0516 (17) 0.0531 (17) -0.0204 (15) 0.0089 (15) -0.0010 (1	
O2 0.083 (2) 0.0516 (17) 0.0531 (17) -0.0204 (15) 0.0089 (15) -0.0010 (1	2)
	3)
O3 0.0741 (19) 0.0412 (15) 0.0502 (15) -0.0192 (13) -0.0034 (13) 0.0006 (12)
N1 0.060 (2) 0.0454 (18) 0.0511 (19) -0.0211 (15) -0.0039 (16) 0.0029 (14)
N2 0.0504 (18) 0.0469 (18) 0.0389 (16) -0.0189 (14) -0.0094 (13) -0.0001 (1	3)
C1 0.070 (3) 0.051 (2) 0.051 (2) -0.024 (2) -0.012 (2) 0.0041 (18)
C2 0.047 (2) 0.051 (2) 0.0414 (19) -0.0225 (17) -0.0130 (16) 0.0006 (16)
C3 0.0431 (19) 0.045 (2) 0.0422 (19) -0.0196 (15) -0.0157 (15) 0.0013 (15)
C4 0.0450 (19) 0.051 (2) 0.0402 (18) -0.0238 (16) -0.0155 (15) 0.0024 (15)

supplementary materials

C5	0.047(2)	0.050 (2)	0.0375 (18)	-0.0187(16)	-0.0077(15)	-0.0029(15)
C6	0.055 (2)	0.042 (2)	0.0414 (19)	-0.0190(16)	-0.0166 (16)	0.0010 (15)
C7	0.063 (2)	0.046 (2)	0.042 (2)	-0.0247(18)	-0.0132(18)	0.0063 (16)
C8	0.056(2)	0.050 (2)	0.0375 (19)	-0.0200(17)	-0.0089(16)	-0.0004(15)
C9	0.058 (2)	0.0422 (19)	0.046 (2)	-0.0206(17)	-0.0179 (17)	0.0043 (15)
C10	0.076 (3)	0.058 (3)	0.061 (3)	-0.019(2)	-0.002(2)	-0.006(2)
C11	0.072 (3)	0.041 (2)	0.052 (2)	-0.0175 (19)	-0.006(2)	0.0038 (17)
						. ,
Geometric paran	neters (Å, °)					
Cl—C1		1.757 (4)	C4—C9		1.397 (5)	
O1—C2		1.322 (4)	C5-	—C6	1.380 (5)	
O1—N1		1.411 (4)	C5-	—Н5А	0.9300	
O2—C8		1.343 (4)	C6—C7		1.384 (5)	
O2—C10		1.426 (5)	C7—C8		1.410 (5)	
O3—C6		1.360 (4)	C7—H7A		0.9300	
O3—C11		1.434 (4)	C8—C9		1.384 (5)	
N1—C3		1.298 (5)	С9—Н9А		0.9300	
N2—C2	1.290 (4) C10—H10A		0—H10A	0.9600		
N2—C3		1.386 (4)	C10	0—H10B	0.9600	
C1—C2		1.482 (5)	C10—H10C		0.9600	
C1—H1B		0.9700	C11—H11A		0.9600	
C1—H1C		0.9700	00 C11—H11B		0.9600	
C3—C4		1.478 (5)	C11—H11C		0.9600	
C4—C5		1.380 (5)				
C2—O1—N1		106.2 (3)	03-	—C6—C7	124.1	(3)
C8—O2—C10		117.5 (3)	C5-	C6C7	120.3	(3)
C6—O3—C11		117.6 (3)	C6-	—С7—С8	120.6	(3)
C3—N1—O1		103.1 (3)	C6-	—С7—Н7А	119.7	
C2—N2—C3		101.7 (3)	C8-	—С7—Н7А	119.7	
C2—C1—Cl	2—C1—Cl 112.7		O2—C8—C9		126.2 (4)	
C2—C1—H1B		109.1	O2—C8—C7		114.7 (3)	
Cl—C1—H1B		109.1	C9—C8—C7		119.1 (3)	
C2—C1—H1C		109.1	C8—C9—C4		119.1	(3)
Cl—C1—H1C		109.1	C8-	—С9—Н9А	120.5	
H1B—C1—H1C		107.8	C4-	—С9—Н9А	120.5	
N2-C2-01		114.5 (3)	02-		109.5	
N2—C2—C1		126.6 (3)	02-		109.5	
O1—C2—C1		118.8 (3)	H1	0A—C10—H10B	109.5	
N1—C3—N2		114.5 (3)	02-		109.5	
N1—C3—C4		121.6 (3)	H1	0A—C10—H10C	109.5	
N2—C3—C4		123.9 (3)	H10B—C10—H10C		109.5	
C5—C4—C9		121.8 (3)	O3—C11—H11A		109.5	
C5—C4—C3		119.4 (3)	O3—C11—H11B		109.5	
C9—C4—C3		118.7 (3)	H1	IA—C11—H11B	109.5	
C6—C5—C4		119.1 (3)	O3—C11—H11C		109.5	
C6—C5—H5A		120.5	H1	IA—C11—H11C	109.5	
C4—C5—H5A		120.5	H1	IB—C11—H11C	109.5	
O3—C6—C5		115.6 (3)				

-0.4(4)	$C_{3}-C_{4}-C_{5}-C_{6}$	1778(3)
		177.6 (3)
0.6 (4)	C11O3C6C5	175.6 (3)
-174.9 (4)	C11—O3—C6—C7	-6.0 (5)
-0.1 (4)	C4—C5—C6—O3	-179.5 (3)
175.7 (3)	C4—C5—C6—C7	2.0 (5)
-150.1 (3)	O3—C6—C7—C8	-178.9 (3)
34.6 (5)	C5—C6—C7—C8	-0.5 (6)
0.8 (4)	C10—O2—C8—C9	4.6 (6)
-178.7 (3)	C10—O2—C8—C7	-177.0 (4)
-0.9 (4)	C6—C7—C8—O2	-179.7 (4)
178.6 (3)	C6—C7—C8—C9	-1.2 (6)
3.0 (5)	O2—C8—C9—C4	179.7 (4)
-176.4 (3)	C7—C8—C9—C4	1.3 (5)
-177.3 (4)	C5—C4—C9—C8	0.2 (5)
3.3 (5)	C3—C4—C9—C8	-179.5 (3)
-1.9 (5)		
	$\begin{array}{c} -0.4 (4) \\ 0.6 (4) \\ -174.9 (4) \\ -0.1 (4) \\ 175.7 (3) \\ -150.1 (3) \\ 34.6 (5) \\ 0.8 (4) \\ -178.7 (3) \\ -0.9 (4) \\ 178.6 (3) \\ 3.0 (5) \\ -176.4 (3) \\ -177.3 (4) \\ 3.3 (5) \\ -1.9 (5) \end{array}$	-0.4 (4)C3-C4-C5-C6 0.6 (4)C11-O3-C6-C5 -174.9 (4)C11-O3-C6-C7 -0.1 (4)C4-C5-C6-O3 175.7 (3)C4-C5-C6-C7 -150.1 (3)O3-C6-C7-C8 34.6 (5)C5-C6-C7-C8 0.8 (4)C10-O2-C8-C9 -178.7 (3)C10-O2-C8-C7 -0.9 (4)C6-C7-C8-O2 178.6 (3)C7-C8-C9-C4 -176.4 (3)C7-C8-C9-C4 -177.3 (4)C5-C4-C9-C8 3.3 (5)C3-C4-C9-C8 -1.9 (5)C3-C4-C9-C8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
С9—Н9А…N2	0.93	2.60	2.925 (5)	101
C5—H5A…N1	0.93	2.54	2.838 (5)	99

